CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	i age z	_	IGCSE – May/June 2013	0620	32	
1	(a) (i)		ed noble gas	0020	[1]	
			ept: any noble gas ept: symbol			
	(ii)		/ CO ₂ names not: equations		[1]	
	(b) (i)		gen and nitrogen (in air) (react) gh temperature		[1]	
			ept: in engines / lightning not: in exhausts		[1]	
	(ii)		il fuels / fuels which contain sulfur pt: named fossil fuel such as coal / oil / natural gas	5	[1]	
			/ combust		[1]	
	(iii)	dam una	two from: age buildings / soil acidification / leaching fro vailable / kill microbes / acidify lakes / kill fish / c vth / crop loss			
	(c) (i)		gen reacts with copper rm copper oxide (which is black)		[1] [1]	
	(ii)	tem	sure volume at room temperature / gas has peratures / volume of gas depends on temperatur causes expansion (of gases) / ORA			
	(iii)	no o	xygen left or <u>all</u> the oxygen has reacted (with coppe	er)	[1]	
	(iv)	39–4	40 cm ³ note: units required		[1]	
2	(a) B 3				[1]	
	·		charge +		[1]	
		⁵⁵ ₃₀ Zn			[1]	
		⁶ ₈ O arge 2	<u>'-</u>		[1] [1]	
	Ε̈́́́́́́	⁷⁰ Ga			[1]	
	(b) nur	(b) number of p = number of e				
	nur	mber	of p > number of e		[1]	
	nur	mber	of p < number of e		[1]	

Mark Scheme

Syllabus

Paper

Page 2

Page 3		3	Mark Scheme	Syllabus	Paper		
				IGCSE – May/June 2013	0620	32	
3	(a)	(i)	complete combustion / combustion in excess oxygen			[1]	
			of fu	of fuels containing carbon / fossil fuels / hydrocarbon (fuels)			
			prod	[1]			
		(ii)	living things / cells / plants / animals / humans / micro-organisms (oxidise / react with) oxygen and food / foodstuff / named foodstuff / car sugar / glucose				
			produces carbon dioxide				
	(b)	(i)	gluc	ose or starch or carbohydrate		[1]	
	` '	• •	oxyg	·		[1]	
		(ii)		/ sunlight / sun / UV		[1]	
		` ,	Ū	rophyll accept: chloroplast		[1]	
				,			
4	(a)	(i)		reaction me / moles / molecules of reactants and products a	re different	[1]	
				ond reaction me / moles / molecules of reactants and products a	re the same	[1]	
		(ii)		reaction (forward) reaction is endothermic and reaction (forward) reaction is exothermic		[1] [1]	
		40					
	(b)	. ,		$_{18} \rightarrow 2C_4H_8 + H_2$		[1]	
		(ii)		$+ 2e \rightarrow H_2$		[2]	
			acce	$H_3O^+ + 2e \rightarrow H_2 + 2H_2O$ ept: $-2e$ on right hand side accept: e^- e: not balanced = 1			
	((iii)	chlorine / Cl ₂ / cond: water treatment / solvents / plastics / PVC / bleach / disinfectants / H0 bacteria / sterilising water / chlorination of water / swimming pools / pestinerbicides / insecticides / germicides / pharmaceuticals				
			sodi	um hydroxide/NaOH		[1]	
				d: making soap / degreasing / making paper / deterring drains / alumina from bauxite / oven cleaner / b		/ paint stripper / [1]	

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0620	32

(a) (i) does 5 not decay or non-biodegradable or flexible or bendable or easily moulded or low density / light / lightweight or waterproof / insoluble in water or does not corrode or durable [1] [2] (ii) any two from: chlorine hydrogen chloride carbon monoxide **(b) (i)** $CH_3 - CH = CH_2$ [1] **note:** can be fully or semi-displayed, C = C must be shown [1] (ii) correct repeat unit -CH(C₆H₅)-CH₂continuation shown [1] (c) glucose two products (polymer and water) / condensation (polymerisation) / (small) molecules removed [1] phenylethene one product (polymer) / addition (polymerisation) [1] 6 (a) (i) ions cannot move / no free ions in solid state [1] ions can move / free ions in liquid state [1] **note:** ions can only move in liquid state = 2 (ii) reduce melting point / reduce energy costs / better conductor when dissolved in cryolite [1] (iii) burns in oxygen / reacts with oxygen / oxidised by oxygen / forms carbon dioxide / forms carbon monoxide [1] (iv) high melting point / inert / unreactive [1] **(b)** protective / unreactive / resists / prevents corrosion / non-porous (layer) [1] of (aluminium) oxide [1] (c) (i) good conductor (of electricity) [1] low density / light / lightweight [1] (ii) steel core (increased) strength / prevent sagging / to increase

[1]

separation of pylons / support

	Page 5		Mark Scheme	Syllabus	Paper
			IGCSE – May/June 2013	0620	32
7	(a) (i)	C ₂ H ₂	COOCH ₂ CH ₃ / CH ₃ CO ₂ CH ₂ CH ₃ / CH ₃ COOC ₂ H ₅ / C ₅ OOCCH ₃ / CH ₃ CH ₂ OOCCH ₃ not: –OCO– linkage is formulae can be displayed or semi-displayed in penalise sticks (i.e. any missing atoms)	CH ₃ CO ₂ C ₂ H ₅ /	[1]
	(ii)	buty	I methanoate		[1]
	(b) (i)	fats	/ <u>vegetable</u> oils / triglycerides / lipids		[1]
	(ii)	two	correct ester linkages, e.g. $-OOC$ / $-O_2C$ and $-COC$) / -CO ₂	[1]
			ents of the 'boxes' being C_6H_4 and C_2H_4 or CH_2CH_2 inuation bonds at both ends		[1] [1]
	(c) (i)		ake colourless / invisible (spots) le / coloured / seen / position made clear / indicate		[1] [1]
	(ii)		distance travelled by sample = R _f ance travelled by solvent (front)		[1]
	(iii)		ple 1 R_f = 0.20 to 0.24 tartaric (acid) ple 2 R_f = 0.44 to 0.48 malic (acid)		[1] [1]
8	(a) (i)	(the	number of particles which is equal to the number of	atoms in) 12g of o	carbon 12
		_	mass <u>in grams</u> which contains the Avogadro's const	ant number of part	icles
			gadro's constant or 6 to 6.023 × 10 ²³ <u>of atoms</u> icles	/ ions / molecule	s / electrons /
		(the	amount of substance which has a mass equal to) it nic mass / relative molecular mass <u>in grams</u>	ts relative formula	mass / relative
		_	amount of substance which has a volume equal to)	24 dm³ of a <u>gas</u> at	RTP [1]
	(ii)	a su	ogadro's constant is the) number of particles / atoms bstance	/ ions / molecules	in one mole of
			number of carbon atoms in 12g of C(12).		
		or the r or	number of particles / molecules in 24 dm ³ of a gas at	RTP	
			6.023×10^{23} (particles / atoms / ions / molecules / e	lectrons)	[1]
	(b) CH	₄ and	SO ₂		[1]
	2/1	6 = 1/	/8 or 0.125 moles of CH ₄ AND 8/64 = 1/8 or 0.125 m	oles of SO ₂	[1]

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0620	32

(c) (i) 4.8/40 = 0.12 moles of Ca 3.6/18 = 0.2 moles of H_2O **both** correct [1] (ii) Ca is in excess (no mark) (because 0.12 moles of Ca need) 0.24 moles / 4.32g of H₂O [1] there is not enough / there are 0.2 moles / 3.6 g of H₂O [1] Ca is in excess (no mark) (because 0.2 moles / 3.6g of water will react with) 0.1moles/4.0g of Ca [1] there is more than that / there are 0.12 moles / 4.8 g of Ca [1] or Ca is in excess (no mark) because the mole ratio Ca:H₂O is 3:5 / mass ratio 4:3 [1] which is bigger than the required mole ratio of 1:2 / mass ratio 10:9 [1] Ca is in excess (no mark) because the mole ratio H₂O:Ca is 5:3 / mass ratio 3:4 [1] which is smaller than the required mole ratio of 2:1 / mass ratio 9:10 [1] (iii) $0.02 \times 40 = 0.8$ (g) [1]